Making Dronesophila Part 1

     Emulating the Drosophila nervous system was step one which I did successfully on a single laptop using functional groups. This works VERY well. 



The functional groups I created were:

Neuron Group    Synapse Count
central                     1455116
optic_lobes             1217922
visual_projection     268547
AN                             115292
Kenyon_Cell             92875
ALPN                     88302
CX                             85831
medulla_intrinsic     81621
visual_centrifugal     76532
DN                             58402
L1-5                     53746
ALLN                     34872
MBIN                     26501
bilateral                     25724
mechanosensory     19246
MBON                     18529
olfactory                     17689
LHCENT             12565
LHLN                     11217
gustatory                     7950
visual                     6400
unknown_sensory       4098
DAN                     3631
ALIN                     2301
ALON                     1992
ocellar                     1696
mAL                     1694
hygrosensory             1575
TuBu                     921
thermosensory     862
motor                     602
CSD                     164
optic                     108
pars lateralis             70
pars intercerebralis     19
sensory                     3

If you replace the Neuron Grouping labels into the boxes in the diagram above, each time a neuron fires, it knows whether it connects to a neuron within its functional group or a neuron outside of its functional group. If inside, it's just matrix functions, if outside, I use UDP to message to that group the neuron and weight that is being sent. 

The largest is the central complex. The list above is sorted by the number of synaptic connections with the largest number to the smallest. 

The above is the Central Nervous system of Drosophila. I am still waiting/investigating the Ventral Nerve Cord (VNC) neurons and will place them into their own functional groups when the data is completed. The VNC is congruent to a mammalian spinal column and peripheral nervous system, and is critical to the full extension of the Drosophila nervous system to the quadcopter.

With the entire nervous system, there are a number of sensing elements that need to be configured. Obvious sensory modalities are vision, pressure, thermal, smell (taste) but there are other modalities not as obvious. I want to use something like the Blue Robotics Navigator Flight Controller to give the emulation accelerometers and gyroscopes for orientation and magnetometers for head direction. The issue becomes what to connect these elements to within the Drosophila central nervous systems. I'm trying to figure this out?





Dronesophila Eyes


Once all these sensory modalities are connected, Dronesophila becomes self-aware! I do not say this lightly but its critical for flight that the robot understand and know its environment in order to allow the nervous system guide and navigate the quadcopter. Vision is very important but alone is not enough. This is one of the most common problems with current robotics in that there is too much emphasis on vision and ignores all other sensory modalities. 

The Central Complex is congruent to the mammal hippocampus. Place cells, grid cells, head direction cells and border cells are so important to our means to navigate domain agnostic environments. I am attempting to develop this same construct within Dronesophila's sensory modalities and emulated nervous system.



Comments

Popular posts from this blog

Use Cases for the emulation of the Drosophila nervous system

Creating Emulations of Nervous Systems